

Indirect effect intercomparison

Johannes Quaas¹, Yi Ming², Surabi Menon^{3,4}, Toshihiko Takemura⁵, Minghuai Wang⁶, Joyce Penner⁶, Andrew Gettelman⁷, Ulrike Lohmann⁸, Nicolas Bellouin⁹, Olivier Boucher⁹, Yves Balkanski¹⁰

1 Max Planck Institute for Meteorology, Hamburg, Germany
2 Geophysical Fluid Dynamics Laboratory / NOAA, Princeton, USA
3 Lawrence Berkeley National Laboratory, Berkeley, USA
4 Goddard Institute for Space Studies / NASA, New York, USA
5 Kyushu University, Fukoka, Japan
6 University of Michigan, Ann Arbor, USA
7 National Center for Atmospheric Research, Boulder, USA
8 Federal Institute of Technology / ETH Zürich, Switzerland
9 Hadley Centre for Climate Change / Met Office, Exeter, United Kingdom
10 Laboratoire des Sciences du Climat et de l'Environnement / IPSL, Gif-sur-Yvette, France

Contents

- Status
- Method
- Forcings
- Twomey
- Second indirect
- Thermodynamics
- Summary
- Conclusion

- Method: Comparison to satellite statistics
- Short-wave forcings, clear and all-sky
- Cloud microphysics / Twomey effect
- Cloud cover / cloud water / second indirect effect
- Thermodynamic effects?
- Summary
- Preliminary conclusions

Indirect effect intercomparison and evaluation

	model	forcing*	status	institution
Status	GFDL GCM	-2.1 Wm ⁻²	submitted	GFDL Princeton
Method	GISS	-0.6 Wm ⁻²	submitted	LBL / GISS
Forcings	SPRINTARS	-1.0 Wm ⁻²	submitted	Univ Kyushu
_	CCM	-1.9 Wm ⁻²	submitted	Univ Michigan
Iwomey	CAM3.5	-2.6 Wm ⁻²	submitted	NCAR Boulder
Second	ECHAM5-eth	-1.4 Wm ⁻²	submitted	ETH Zürich
mancee	HadGEM	-1.5 Wm ⁻²	submitted	Met Office Exeter
Thermo- dynamics	ECHAM5-rh	-1.1 Wm ⁻²	submitted	MPI Met Hamburg
	ECHAM5-Ic	-1.6 Wm ⁻²	submitted	MPI Met Hamburg
Summary	LMDZ-INCA		running	LSCE Gif s/ Yvette
Conclusion	CCM-Oslo		in prep	Univ Oslo
	CAM		in prep	PNNL
	EC-Earth		in prep	ETH Zürich
	ECHAM5		in prep	Univ Oxford
ZAAAA	GMI		in prep	Georgia Tech

Status

Method

Forcings

Twomey

Second indirect

Thermodynamics

Summary

Conclusion

The models are compared to satellite data:

CERES SSF dataset including CERES broadband SW and LW radiative fluxes MODIS cloud and aerosol properties

Terra satellite (10.30 am overpass time): Edition 2B 1 March 2000 – 28 February 2006 data (6 years)

Aqua satellite (13.30 pm overpass time): Edition 2A 1 January 2003 – 31 December 2006 data (4 years)

All data are interpolated to a 2.5°x2.5° regular lat-lon grid

Method relies on Quaas et al., J. Geophys. Res. 2008

Status

Forcings

Twomey

Second indirect

Thermodynamics

Summary

Conclusion

NPO: North Pacific Ocean NAM: North America NAO: North Atlantic Ocean EUR: Europe ASI: Asia TPO: Tropical Pacific Ocean TAO: Tropical Atlantic Ocean AFR: Africa TIO: Tropical Indian Ocean SPO: South Pacific Ocean SAM: South America SAO: South Atlantic Ocean SIO: South Indian Ocean OCE: Oceania

MAM: March-April-May JJA: June-July-August SON: September-October-November DJF: December-January-February

Analyse separately

- 14 different regions
- 4 seasons (MAM,JJA,SON,DJF)

Quaas, Boucher, Bellouin, Kinne, J. Geophys. Res., 2008

Twomey

Second indirect

Thermodynamics

Summary

Conclusion

The ocean mean is the mean over (4x8 = 32 slopes)

- MAM, JJA, SON, DJF
- NPO, NAO, TPO, TAO, TIO, SPO, SAO, SIO

Error bars show standard deviation around mean.

Separate land / ocean

Summary plots:

All regions are weighted equally.

The land mean is the mean over (4x6 = 24 slopes)

- MAM, JJA, SON, DJF
- NAM, EUR, ASI, AFR, SAM, OCE

7/24

Total aerosol forcing [W m⁻²]

Relationship SW albedo - AOD

Cloud liquid water path [g m⁻²]

Total cloud cover

Cloud top temperature [K]

Cloud top temperature [K] and OLR [W m⁻²]

		Terra	Aqua	Α	В	С	D	Е	F	G1	G2	G3
Albedo – AOD	land	0.18	0.17				0.074	0.11	0.18	0.09	0.10	0.09
	sea	0.25	0.25				0.19	0.15	0.30	0.14	0.12	0.11
Clear-sky albedo – AOD	land	0.094	0.113				0.070	0.040	0.129	0.030	0.035	0.038
	sea	0.082	0.067				0.105	0.049	0.189	0.073	0.066	0.060
TCC – AOD	land	0.61	0.52		0.61	0.09	0.17	0.31	0.42	0.18	0.16	0.24
	sea	0.30	0.29		1.04	0.15	0.30	0.31	0.32	0.11	0.08	0.08
LWP – AOD	land	0.12	0.15		1.75	0.42	0.76	0.91	0.46	0.55	0.64	0.75
	sea	0.15	0.12		1.30	0.12	1.26	0.58	0.37	0.55	0.52	0.63
CDNC – AOD	land	0.11	0.09	0.21	0.37	0.25	0.25	0.17	0.31	0.29	0.31	0.39
	sea	0.26	0.25	0.41	0.25	0.15	0.48	0.23	0.36	0.21	0.25	0.30

- most models slightly underestimate sensitivity of albedo to AOD

Summary

Conclusion

sensitivity slightly weaker / much weaker (less than 1/2) / equal / slightly stronger / much stronger (more than x2) than in data 16/24

		Terra	Aqua	Α	в	С	D	E	F	G1	G2	G3
Albedo – AOD	land	0.18	0.17				0.074	0.11	0.18	0.09	0.10	0.09
	sea	0.25	0.25				0.19	0.15	0.30	0.14	0.12	0.11
Clear-sky albedo – AOD	land	0.094	0.113				0.070	0.040	0.129	0.030	0.035	0.038
	sea	0.082	0.067				0.105	0.049	0.189	0.073	0.066	0.060
TCC – AOD	land	0.61	0.52		0.61	0.09	0.17	0.31	0.42	0.18	0.16	0.24
	sea	0.30	0.29		1.04	0.15	0.30	0.31	0.32	0.11	0.08	0.08
LWP – AOD	land	0.12	0.15		1.75	0.42	0.76	0.91	0.46	0.55	0.64	0.75
	sea	0.15	0.12		1.30	0.12	1.26	0.58	0.37	0.55	0.52	0.63
CDNC – AOD	land	0.11	0.09	0.21	0.37	0.25	0.25	0.17	0.31	0.29	0.31	0.39
	sea	0.26	0.25	0.41	0.25	0.15	0.48	0.23	0.36	0.21	0.25	0.30

- most models slightly underestimate sensitivity of albedo to AOD

- most models strongly (land) / slightly (oceans) underestimate

sensitivity of clear-sky albedo to AOD

Summary

Conclusion

sensitivity slightly weaker / much weaker (< 1/2) / equal / slightly stronger / much stronger (> x2) than in data

		Terra	Aqua	Α	в	С	D	E	F	G1	G2	G3
Albedo – AOD	land	0.18	0.17				0.074	0.11	0.18	0.09	0.10	0.09
	sea	0.25	0.25				0.19	0.15	0.30	0.14	0.12	0.11
Clear-sky albedo – AOD	land	0.094	0.113				0.070	0.040	0.129	0.030	0.035	0.038
	sea	0.082	0.067				0.105	0.049	0.189	0.073	0.066	0.060
TCC – AOD	land	0.61	0.52		0.61	0.09	0.17	0.31	0.42	0.18	0.16	0.24
	sea	0.30	0.29		1.04	0.15	0.30	0.31	0.32	0.11	0.08	0.08
LWP – AOD	land	0.12	0.15		1.75	0.42	0.76	0.91	0.46	0.55	0.64	0.75
	sea	0.15	0.12		1.30	0.12	1.26	0.58	0.37	0.55	0.52	0.63
CDNC – AOD	land	0.11	0.09	0.21	0.37	0.25	0.25	0.17	0.31	0.29	0.31	0.39
	sea	0.26	0.25	0.41	0.25	0.15	0.48	0.23	0.36	0.21	0.25	0.30

- most models slightly underestimate sensitivity of albedo to AOD - most models strongly (land) / slightly (oceans) underestimate Summary sensitivity of clear-sky albedo to AOD
- models (strongly) underestimate (land) / simulate well or Conclusion underestimate (oceans) sensitivity of total cloud cover to AOD

18/24

sensitivity slightly weaker / much weaker ($< \frac{1}{2}$) / equal / slightly stronger / much stronger (> x2) than in data

		Terra	Aqua	Α	в	С	D	Е	F	G1	G2	G3
Albedo – AOD	land	0.18	0.17				0.074	0.11	0.18	0.09	0.10	0.09
	sea	0.25	0.25				0.19	0.15	0.30	0.14	0.12	0.11
Clear-sky albedo – AOD	land	0.094	0.113				0.070	0.040	0.129	0.030	0.035	0.038
	sea	0.082	0.067				0.105	0.049	0.189	0.073	0.066	0.060
TCC – AOD	land	0.61	0.52		0.61	0.09	0.17	0.31	0.42	0.18	0.16	0.24
	sea	0.30	0.29		1.04	0.15	0.30	0.31	0.32	0.11	0.08	0.08
LWP – AOD	land	0.12	0.15		1.75	0.42	0.76	0.91	0.46	0.55	0.64	0.75
	sea	0.15	0.12		1.30	0.12	1.26	0.58	0.37	0.55	0.52	0.63
CDNC – AOD	land	0.11	0.09	0.21	0.37	0.25	0.25	0.17	0.31	0.29	0.31	0.39
	sea	0.26	0.25	0.41	0.25	0.15	0.48	0.23	0.36	0.21	0.25	0.30

- most models slightly underestimate sensitivity of albedo to AOD - most models strongly (land) / slightly (oceans) underestimate Summary sensitivity of clear-sky albedo to AOD

- models (strongly) underestimate (land) / simulate well or Conclusion underestimate (oceans) sensitivity of total cloud cover to AOD

- models strongly overerestimate sensitivity of liquid water path

sensitivity slightly weaker / much weaker ($< \frac{1}{2}$) / equal / slightly stronger / much stronger (> x2) than in data

		Terra	Aqua	Α	В	С	D	E	F	G1	G2	G3
Albedo – AOD	land	0.18	0.17				0.074	0.11	0.18	0.09	0.10	0.09
	sea	0.25	0.25				0.19	0.15	0.30	0.14	0.12	0.11
Clear-sky albedo – AOD	land	0.094	0.113				0.070	0.040	0.129	0.030	0.035	0.038
	sea	0.082	0.067				0.105	0.049	0.189	0.073	0.066	0.060
TCC – AOD	land	0.61	0.52		0.61	0.09	0.17	0.31	0.42	0.18	0.16	0.24
	sea	0.30	0.29		1.04	0.15	0.30	0.31	0.32	0.11	0.08	0.08
LWP – AOD	land	0.12	0.15		1.75	0.42	0.76	0.91	0.46	0.55	0.64	0.75
	sea	0.15	0.12		1.30	0.12	1.26	0.58	0.37	0.55	0.52	0.63
CDNC – AOD	land	0.11	0.09	0.21	0.37	0.25	0.25	0.17	0.31	0.29	0.31	0.39
	sea	0.26	0.25	0.41	0.25	0.15	0.48	0.23	0.36	0.21	0.25	0.30

- most models slightly underestimate sensitivity of albedo to AOD - most models strongly (land) / slightly (oceans) underestimate Summary sensitivity of clear-sky albedo to AOD
- models (strongly) underestimate (land) / simulate well or Conclusion underestimate (oceans) sensitivity of total cloud cover to AOD - models strongly overerestimate sensitivity of liquid water path
 - models strongly overerestimate (land) / simulate relatively well (oceans) sensitivity of CDNC to AOD

20/24

sensitivity slightly weaker / much weaker ($< \frac{1}{2}$) / equal / slightly stronger / much stronger (> x2) than in data

Status

Method

Forcings

Twomey

Second indirect

Thermodynamics

Summary

Conclusion

- seven models (4 US, 2 Europe, 1 Japan; one in 3 realisations; forcing -2.6 to -0.6 W m⁻²)
- compared zonal mean fields and statistical relationships to satellite observations

Status

Method

Forcings

Twomey

Second indirect

Thermodynamics

Summary

Conclusion

- seven models (4 US, 2 Europe, 1 Japan; one in 3 realisations; forcing -2.6 to -0.6 W m⁻²)
- compared zonal mean fields and statistical relationships to satellite observations
- overall aerosol effect / albedo sensitivity (slightly) underestimated
- Twomey effect good over sea / overestimated over land
- 2nd indirect effect: sensitivity of cloud cover underestimated / sensitivity of LWP overestimated

Status

Method

Forcings

Twomey

Second indirect

Thermodynamics

Summary

Conclusion

- compared zonal mean fields and statistical relationships to satellite observations
- overall aerosol effect / albedo sensitivity (slightly) underestimated
- Twomey effect good over sea / overestimated over land
- 2nd indirect effect: sensitivity of cloud cover underestimated / sensitivity of LWP overestimated
- All models do show **positive correlation between TCC and AOD**, over sea good agreement for some models with data
- Some models show a **thermodynamic effect** (relation cloudtop temperature – AOD, OLR – AOD) consistent with data

Thank you

http://wiki.esipfed.org/index.php/Indirect_forcing

Johannes Quaas¹, Yi Ming², Surabi Menon^{3,4}, Toshihiko Takemura⁵, Minghuai Wang⁶, Joyce Penner⁶, Andrew Gettelman⁷, Ulrike Lohmann⁸, Nicolas Bellouin⁹, Olivier Boucher⁹, Yves Balkanski¹⁰

Max Planck Institute for Meteorology, Hamburg, Germany
 Geophysical Fluid Dynamics Laboratory / NOAA, Princeton, USA
 Lawrence Berkeley National Laboratory, Berkeley, USA
 Goddard Institute for Space Studies / NASA, New York, USA
 5 Kyushu University, Fukoka, Japan
 University of Michigan, Ann Arbor, USA
 7 National Center for Atmospheric Research, Boulder, USA
 8 Federal Institute of Technology / ETH Zürich, Switzerland
 9 Hadley Centre for Climate Change / Met Office, Exeter, UK
 10 Laboratoire des Sciences du Climat et de l'Environnement / IPSL, Gif-sur-Yvette, France

