IMPACT/DAO Model Description

Joyce Penner, Xiaohong, Liu, Michael Herzog

IMPACT/DAO

- Uses NASA DAO 1997 meteorological fields
 - No soil moisture, no 10 m wind fields
 - Dust, sea salt not interactive
- Uses IPCC-recommended emissions inventories except for dust (from Ginoux for 1997 DAO winds)
- Emissions put into BL for dust and biomass burning
- Wet scavenging as in Harvard GEOS-CHEM model except that large scale scavenging uses 0.5 g/m3 for LWC
- Dry deposition as in Zhang, Gong et al. [AE, 2001]

Unique features

- DAO version has improved LWC for sulfate chemistry
- GMI model is based on IMPACT
- Will run with more than one meteorological fields:
 - IMPACT/DAO
 - GMI/MACCCM3
 - GMI/GISSII'

Comparison of burdens

	Burden (Tg)	wet (Tg/yr)(Tg/yr	dry) (days)	Lifetime
DAO	0.058 7.17	1.75		2.40
GISS	0.080 6.92	2.04		3.26
NCAR	0.060 7.31	1.88		2.4
GRAN	TOUR/CCM1	ffBC+bbBC:		
	0.20	9.56	2.66	5.97
DAO*	0.14	5.00	1.65	7.52

NCAR MACCM3 met data maintain highest gradients for a "fuel tracer" introduced as aircraft emissions Burdens:

DAO	3.3e-4 Tg
GISS	5.7e-4 Tg
NCAR	4.1e-4 Tg

Adding sulfate to IMPACT/GMI Need LWC of clouds to calculate aqueous conversion of SO₂ to SO₄

Comare LWP from models to data:

Greenwald: 76.2 g/m2

Weng: 48.7 g/m2

January 1-15 MACCM3 NCAR-from cloud optical depth Liquid water path calculated from optical depth Mean 43.019 Max 621.473 Min 1.47678E-5

January 1-15 MACCM3 NCAR-from met data

Comparison of LWP from IMPACT/DAO and data

LWC=0.18(g/m3)e^{-Z/H}

Large scale: CF=1-sqrt(1-(RH-RHc)/(1-RHc)) (Sundquist et al 1989)

Convective: $CF=C_0+C_1\log(Mc)+C_2(\log(Mc))^2$ (Xu and Krueger, 1991):

latitude

Near term plans: Implement aerosol dynamic model

Aerosol dynamic modules

- <u>AER</u>: sectional model, 40 size bins (0.39nm < r < 3.2µm)
- <u>Mod6M</u>: quadrature method of moments
- <u>UMaer</u>: model of modes and moments

Nucleated particles after 1 day

Condensation after one day

Coagulation after one day

AER [particles/cm³]

Accumulation mode after one day