

Aerosol Radiative Forcing

The AeroCom Prescribed Experiment:
Towards the Quantification of Host Model Errors

AeroCom Meeting, Oxford 27/09/2010

Philip Stier

Department of Physics / Oriel College

University of Oxford

Stefan Kinne, Michael Schulz, Gunnar Myhre, John Seinfeld

Assessment of aerosol direct radiative forcing

AeroCom: Intercomparison and assessment of the underlying process representations

The AeroCom Prescribed Experiment

Facilitate inter-comparability through fixing 3D aerosol radiative properties

AeroCom Prescribed - Set-up

Prescribe aerosol radiative properties identically in all "models":

- Extinction, Single Scattering Albedo, Asymmetry Factor:
 - 3D distributions
 - 24 SW wavelengths
 - "fool proof" offline mapping tools to model resolution and radiation bands

Figure: Annual-mean anthropogenic and total aerosol optical depth at 550 nm derived from AeroCom median model and AERONET.

Input Data Set-up - Step 1 out of 3

Input data on 2D 1x1 degree with 24 spectral bands

Step 1:

Mapping to model specific spectral bands.

Required:

NetCDF operators (nco tools)

Input Data Set-up – Step 2 out of 3

Input data on 2D 1x1 degree with 24 spectral bands

Step 2:

Regridding to respective spatial model resolution.

Required:

NetCDF operators (nco tools)

Climate Data Operators (CDO)

No indentation for this shell type.

Input Data Set-up – Step 3 out of 3

Input data on 2D 1x1 degree with 24 spectral bands

Step 3:

Creation of 3D files from 2D fields using 3D fractional optical depth input file.

Required:

NetCDF operators (nco tools)

Climate Data Operators (CDO)

No indentation for this shell type.