

On the use of satellite remote sensing to determine direct aerosol radiative effect over land : A case study over China

Anu-Maija Sundström, Antti Arola, Pekka Kolmonen, Gerrit de Leeuw, and Markku Kulmala

ILMATIETEEN LAITOS METEOROLOCISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

anu-maija.sundstrom@helsinki.fi

Outline

Introduction

- Motivation for the study
- Key guestions
- Method and the study area
- Results
 - Normalization of the CERES fluxes
 - ADRE over China
 - Aerosol-free flux from the satellite method and comparison with model results
 - Cases of positive ADRE

Introduction and motivation for the study

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Aerosol direct SW radiative effect ADRE

• At the top of the atmosphere:

$$ADRE_{TOA} = F_{TOA,no_aer}^{\uparrow} - F_{TOA,aer}^{\uparrow}$$

 $ADRE_{TOA} < 0$, cooling $ADRE_{TOA} > 0$, warming

- Contribution from both natural and anthropogenic aerosol.
- Estimates of ADRE vary and uncertainties exist due to aerosols high temporal and spatial variation and relatively short lifetime in the atmosphere.

Aerosol direct SW radiative effect ADRE

- Estimates of ADRE can be obtained by
 - Radiative transfer models
 - Radiative transfer models coupled with observations e.g. from remote sensing instruments
 - Using multi-sensor remote sensing data
- The remote sensing approach is based on using coincident broad band flux and AOD observations
 - CERES –SSF data; CERES broadband fluxes combined with MODIS AOD
 - The AOD data is used to estimate the value for aerosol-free flux, which can not be obtained from the observations

Motivation

- The satellite based method has been used previously
 - Over ocean e.g.: Loeb and Manalo-Smith, 2005, Zhao et al. 2008, Cristopher 2011,
 - Over land e.g.: Patadia et al., 2008, Sena et al., 2013
 - Over land and ocean: Feng and Christopher 2013.
- Even though the satellite based approach has been used in various studies, there has been less focus on the method itself

Key questions

- The satellite method includes a number of assumptions, e.g. that the aerosol type does not change systematically over a month
 - Does the method work in an environment having highly variable aerosol conditions?
- How good is the estimate for aerosol-free flux obtained from the satellite method?
- Is the satellite method working over some surface / with some aerosol type / loading better than other and is there some method parameter indicating that?

Method and the study area

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Deriving instantaneous ADRE using coincident CERES SW fluxes and MODIS AODs

Coincident TOA SW flux and AOD observations are collected over a month in each 0.5 deg. grid cell

 CERES observation (grid cell monthly mean)

- Criteria for successful regression e.g.:
 - observations are flagged cloud free (based on MODIS)
 - Number of obs./month ≥ 10
 - Correlation coefficient $\geq |0.2|$

The study area

China: Population Density

- Study period March-October 2009
 CERES SSF data from TERRA
 - observations over inland water were removed
- Radiative transfer simulations were also carried out as a reference
 - no "validation" data available
 - e.g. aerosol-free TOA fluxes

Results 1

Normalization of the CERES fluxes

Aerosols, SZA, water vapour content, DOY, surface...

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Relative variation of SZA and water vapour within the study area

Example of normalization

 Normalization to fixed SZA, water vapor and DOY

modeled fluxes

After normalization:

- Increased correlation between AOD and fluxes
- Decreased RMSE
- Somewhat lower estimate for *F_{no_aer}*

Absolute change in observed CERES fluxes due to normalization

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITI UNIVERSITY OF HELSINKI

ADRE from the satellite based method

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

What to expect? ADRE as a combination of surface and aerosols

Seasonal median ADRE obtained from the satellite method

ADRE vs. AOD

Inst. ADRE Mar.-Oct. 2009

AOD Mar.-Oct. 2009 (only obs. Included in the fitting)

0.9

AOD at 550 nm

1.0

24h ADRE median over the study area and period: -5.0 Wm-²

HELSINGIN YLIOPISTO NGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Results 3

Aerosol-free flux from the satellite method and comparison with modeled values

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Aerosol – free TOA flux from the satellite fitting

-40

125 E

120 E

115 F

20[°]N 100

105 E 110 E

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Difference of aerosol-free fluxes (satellite – model)

W١

- In 57% of cases the difference between satellite and model was within ±10 Wm⁻².
- During summer months (Jun-Aug) the relative number of "extreme differences" was largest.

The aerosol – free flux difference vs. parameters related to TOA flux- AOD fitting

0

Dynamic AOD range

0.5

Number of grid cell obs. / month

- High positive correlation does not necessarily indicate good agreement between satellite method and model
 - For negative correlation satellite method provides systematically larger fluxes
 - with large dynamical AOD range and large number of observations less "extreme" differences

Aerosol-free flux difference vs. surface albedo

Correlation -0.45

Over bright surfaces satellite method gives often lower values for aerosol-free flux than model.

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Cases of positive ADRE; Real effect or method artifact?

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Cases of positive ADRE

- Especially during summer months positive ADRE was observed over unexpected places.
- Even after normalization the correlation between TOA fluxes and AODs was highly negative

Cases of positive ADRE

- RT simulations show that the aerosols should have SSA ~ 0.7 to produce positive ADRE over the surface.
- Especially AOD ~ 0.5 the flux values differ considerably
- Possible explanations: subvisual clouds, change in aerosol type (mixture) or both

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Summary

- Results indicate that the normalization especially to a fixed SZA increases the correlation between AOD and TOA fluxes
 - Overall the difference to modeled aerosol-free flux becomes somewhat smaller
- The resulting median 24 h ADRE over the area is -5 Wm⁻²
 - Similar estimates found in the literature
- Positive values of ADRE over eastern part of the study area, especially during summer months, is most probably a method artifact due to subvisual clouds, change in aerosol type or both.