### Aerosol retrievals in partially clouded scenes

Arjen Stap<sup>1,2</sup>, Otto Hasekamp<sup>1</sup>

 ${}^1 {\mbox{SRON}} \\ {\mbox{Netherlands Institute for Space Research}}$ 

2 IMAU Institute for Marine and Atmospheric research Utrecht





## Why partially clouded scenes?

Most current aerosol retrieval algorithms are developed for retrievals above homogeneous cloud fields or clear sky scenes.

The latter requires a priori cloud screening;

- filter too strict and lose data, especially
  - near-cloud scenes (increased AOT)
- filter too loose and end up with a 'contaminated' data-set
  - erratic retrievals (overestimated AOT for example)



Illustration of the 'twilight' zone [Koren et. al., 2007, GRL ].

## Why partially clouded scenes?

Most current aerosol retrieval algorithms are developed for retrievals above homogeneous cloud fields or clear sky scenes.

The latter requires a priori cloud screening;

- filter too strict and lose data, especially
  - near-cloud scenes (increased AOT)
- filter too loose and end up with a 'contaminated' data-set
  - erratic retrievals (overestimated AOT for example)



## Goal & outline

## Goal

► Further develop the aerosol retrieval algorithm (intended for clear sky scenes) to account for partial cloud cover, so it can retrieve aerosol properties in cloud contaminated scenes.

## Today

 Intermediate step: Retrievals on partially clouded scenes (with original algorithm) to asses the sensitivity to and the effect of cloud contamination.

## Method

#### measurement

Multi-angle observations of intensity and polarization.

POLDER-3 (POLarization and Directionality of Earth's Reflectances) on board PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Science coupled with Observations from Lidar).





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

## Method

#### aerosol & ocean parameters

#### Fine & Coarse Aerosol mode;

| variable         | explanation             |
|------------------|-------------------------|
| R <sub>eff</sub> | Effective radius        |
| $V_{eff}$        | Effective variance      |
| Mr               | Reflection index (real) |
| Mi               | Reflection index (im.)  |
| N <sub>c</sub>   | Column density          |
| S                | frac. spher. particles  |
|                  | (coarse mode only)      |

#### Ocean parameters;

| variable             | explanation     |
|----------------------|-----------------|
| $V_x$                | wind speed in x |
| $V_y$                | wind speed in y |
| Foam <sub>frac</sub> | foam fraction   |
| Foam <sub>alb</sub>  | foam albedo     |
| Chla                 | Chlorophyll-a   |



Micrographs, courtesy USGS, UMBC (Chere Petty), and Arizona State University (Peter Buseck).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

## Method

#### Philips-Tikhonov regularization

- Initial guess aerosol & surface/ocean parameters (LUT)
- Calculate optical properties of aerosol & surface/ocean
- Do radiative transfer calculation & obtain Jacobian
- Compare with actual measurement
- Minimize cost function

$$\hat{x} = \min_{x} \left( ||S_{y}^{-\frac{1}{2}} (F(x) - y)||^{2} + \gamma ||W(x - x_{\alpha})||^{2} \right)$$

- Iterate these step until convergence
- filter the result based on  $\chi^2$  (i.e. goodness of fit)



Co-locate MODIS & PARASOL data and use cloud properties from MODIS for the analysis.

<code>PARASOL</code> : 6.2x6.2 km pixel (full res.) or 19x19km km pixel (medium res.) MODIS :  ${\sim}1x1$  km pixel

4 levels in MODIS cloud mask: -conf. cloudy, -prob. cloudy, -prob. clear, -conf. clear

we use : f = conf. cloudy + prob. cloudy

An example



A clear sky measurement at 865 nm (  $\chi^2$  = 5.8)

Inhomogeneities at different scattering angles





An measurement at 865 nm of a scene that was inhomogeneous at the different scattering angles ( $\chi^2$ =196.7).



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An measurement at 865 nm of a scene that was inhomogeneous at the different scattering angles ( $\chi^2{=}351.7).$ 

Inhomogeneities at different scattering angles



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An example



## Results

Succes rates



▲□▶▲圖▶▲≣▶▲≣▶ = つへの

# Validation against 10 AERONET stations overlooking the ocean;

Anmyon, Forth Crete, Gosan SNU, Guam, Midway Island, Muscat, Shirahama, Trelew, Trinidad Head & Sevastopol.

Max distance 40 km Max time diff. 1 hr

### Validate the;

- AOT
- SSA
- Ångström exponent
- Real refractive Index.



Figure: An AERONET sunphotometer overlooking the ocean.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

AOT comparison



Figure: The median of the coincidently retrieved AOT at 670 nm, with the range in gray. Extra filter; meas. with  $AOT_{670} > 5.0$  discarded.

#### Ångström exponent comparison



Figure: The median of the coincidently retrieved Ångström exponents at 490 nm / 670 nm, with the range in gray. Extra filter to discards measurements with  $AOT_{670} < 0.1$ .

(日)、

э

SSA comparison



Figure: The retrieved single scattering albedo at 670 nm near Forth Crete, with the range in gray. Extra filter to discards measurements where the Avg. Ker. of  $m_{i,f} < 0.1$ .

## Conclusion

The original algorithm is sensitive to clouds. room to fit water clouds

 Clouds can be effectively screened out on basis of a goodness of fit criterion.

the rainbow feature plays a role here

- Less near-cloud scenes and scenes with a high aerosol load are discarded.
- Retrieved AOT, SSA, Ångström exponent & Refractive indices compare well to AERONET observations.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

### Outlook

- Improve 3-mode retrieval (fitting COT)
- Check validity of cloud in model (neglected 3D effects, etc)

・ロト・日本・モト・モート ヨー うへで

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >

extra slides

Comparison of the real refractive index

By AERONET a real refractive index is retrieved for 1 mode.

By our algorithm, two real refractive indices are retrieved (1 per mode).

We can only compare our total particle volume weighted real refractive index with AERONET;

$$m_{comb} = \frac{V_{fine} m_{r,fine} + V_{coarse} m_{r,coarse}}{V_{fine} + V_{coarse}}$$
(1)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <



Figure: The median of the coincidently retrieved real refractive index<sup>1</sup> near Forth Crete

## 3-mode retrievals

including a cloud in the algorithm

Include cloud by adding a 3rd mode, representing water droplets. gamma-size distribution (instead of log-normal)

| parameter        | value                                           |
|------------------|-------------------------------------------------|
| R <sub>eff</sub> | use MODIS data or apriori                       |
| $V_{eff}$        | fixed at 0.1 $\mu$ m                            |
| M <sub>r</sub>   | fixed (wavelength dependent [Segelstein, 1981]) |
| Mi               | fixed (wavelength dependent [Segelstein, 1981]) |
| N <sub>c</sub>   | -                                               |
| S                | fixed at 1.0                                    |
| f                | use MODIS data                                  |

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

## 3-mode retrievals

preliminary results



A Med. Res. PARASOL observation & fit at 865 nm ( $\chi^2$ =6.8).

## 3-mode retrievals

preliminary results



(日)、(四)、(E)、(E)、(E)

A Medium Resolution PARASOL measurement at 865 nm ( $\chi^2$ =10.7).