

Closed Cells

Closed cells

Open cells

MODIS TERRA 26 June 2003 19:40 UT

Simulations of CCN controlling cloud regimes

CCN=65 (cm⁻³)

CCN=500 (cm⁻³)

Wang and Feingold 2009

Rosenfeld et al., 2012

Rosenfeld et al., 2012

Ovchinnikov et al., GRL 2013

Can aerosols close open cells?

Rosenfeld et al., 2012

Simulation of ship tracks

Wang and Feingold 2009

Temporal evolution and longevity of17/1/200619:57 MSGship tracks

Color scheme: Lensky and Rosenfeld, ACP 2008

Red: 12.0-10.8 µm BT

Green: 12.0-10.8 µm BT

Blue: 10.8 μm BT

17/1/2006 20:57 MSG

17/1/2006 21:57 MSG

17/1/2006 22:57 MSG

17/1/2006 23:57 MSG

18/1/2006 00:57 MSG

18/1/2006 01:57 MSG

18/1/2006 02:57 MSG

18/1/2006 03:57 MSG

18/1/2006 04:57 MSG

18/1/2006 05:57 MSG

18/1/2006 06:57 MSG

18/1/2006 18:57 M<u>SG</u>

18/1/2006 19:57 MSG

18/1/2006 20:57 MSG

18/1/2006 21:57 MSG

18/1/2006 22:57 MSG

18/1/2006 23:57 MSG

19/1/2006 00:57 MSG

19/1/2006 01:57 MSG

19/1/2006 02:57 MSG

19/1/2006 03:57 MSG

19/1/2006 04:57 MSG

19/1/2006 05:57 MSG

19/1/2006 06:57 MSG

19/1/2006 07:57 MSG

19/1/2006 09:57 MSG

Air pollution from 42 hours old ship tracks "Clouds" the Oceans

0

19/1/06 12:00 UTC MODIS Re TERRA

Goren and Rosenfeld, in preparation, 2011

For the 5% most reflective pixels

Goren and Rosenfeld, under review

Analysis of 50 pairs of open vs. adjacent closed cells

			Difference
	Open	Closed	Closed-Open
N of cloud	13 (± 3)*	53 (± 18)*	40*
drops [cm ³] [Szczodrak et al., 2001]	6 (± 1)	47 (± 16)	41
Effective	26 (± 1)*	15 (± 2)*	11*
radius [mm] [MODIS cloud product]	26 (± 1)	16 (± 1)	10
Radiative Effect [Wm ⁻²]	-28 (± 5)	-138 (± 19)	-109

* For the 5% most reflective pixels

Goren and Rosenfeld, under review

The components of the radiative forcing due to closing open MSC

Cloud brightening due to increased Cloud Water Path 32 ± 11 %

Goren and Rosenfeld, under review

The global radiative forcing due to visible ship tracks is ~ 0.005 wm⁻². So do ship emissions matter at all?

Annual mean radiative forcing of ship tracks During 2004. *Schreier et al., GRL 2007.*

Can Europe act as a huge ship?

2010 January 26 10:27 UTC

010/01/26 10:27 CH02 0.8 CH04 A3.9 I.M.Lensky (BIU) & .Rosenfeld (HUJI) Yellow represents smaller drops. Pink represents larger drops, Advection from land

2010 January 26 11:27 UTC

010/01/26 11:27 CH02 0.8 CH04 A3.9 I.M.Lensky (BIU) & .Rosenfeld (HUJI) Yellow represents smaller drops. Pink represents larger drops, Advection from land

2010 January 26 12:27 UTC

010/01/26 12:27 CH02 0.8 CH04 A3.9 I.M.Lensky (BIU) & .Rosenfeld (HUJI) Yellow represents smaller drops. Pink represents larger drops, Advection from land B

2010 January 26 13:27 UTC

2010 January 26 14:27 UTC

2010 January 26 16:27 UTC

2010 January 26 18:27 UTC

2010 January 26 19:27 UTC

2010 January 26 20:27 UTC

2010 January 26 21:27 UTC

2010 January 26 22:27 UTC

2010 January 26 23:27 UTC

2010 January 27 00:27 UTC

2010 January 27 01:27 UTC

1.M.Lensky (BIU)& Rosenfeld (HUJI)

Anti cyclonic flow

B

2010 January 27 02:27 UTC

2010 January 27 03:27 UTC

2010 January 27 04:27 UTC

2010 January 27 05:27 UTC

2010 January 27 06:27 UTC

2010 January 27 07:27 UTC

2010 January 27 08:27 UTC

2010 January 27 10:27 UTC

2010 January 27 11:27 UTC

2010 January 27 12:15 UTC

2010 January 27 13:15 UTC

0.8

2010/01/27 13:15 CH02 I.M.Lensky (BIU)& D.Rosenfeld (HUJI)

Cells start opening in the older air mass

A

B

Open and closed cells under similar meteorology

2010 January 27 14:15 UTC

0.8

CH02

010/01/27 14:15

I.M.Lensky (BIU)& Rosenfeld (HUJI)

Cells start opening in the older air mass

Open and closed cells under similar meteorology

A

В

2010 January 27 15:15 UTC

CH02 0.8

1010/01/27 15:15 I.M.Lensky (BIU)& Rosenfeld (HUJI)

Open and closed cells under similar meteorology

CH04 A3.9

CH09 10.8

A

В

2010 January 27 15:45 UTC

CH02 0.8

010/01/27 15:45

I.M.Lensky (BIU)& Rosenfeld (HUJI)

Open and closed cells under similar meteorology

CH04 A3.9

CH09 10.8

Α

В

2010 January 27 16:30 UTC

CH02 0.8

010/01/27 16:30

I.M.Lensky (BIU)& Rosenfeld (HUJI)

Open and closed cells under similar meteorology

CH04 A3.9

CH09 10.8

В

Α

Night Day

2010 January 27 18:15 UTC

010/01/27 18:15 I.M.Lensky (BIU)& Rosenfeld (HUJI) Open and closed cells under similar meteorology В Α Day

2010 January 27 19:15 UTC

010/01/27 19:15 I.M.Lensky (BIU)& Rosenfeld (HUJI)

Open and closed cells under similar meteorology

B

A

Night

2010 January 27 20:15 UTC

010/01/27 20:15 I.M.Lensky (BIU)& Rosenfeld (HUJI) Open and closed cells under similar meteorology B A

2010 January 27 21:15 UTC

010/01/27 21:15 I.M.Lensky (BIU)& .Rosenfeld (HUJI)

Open and closed cells under similar meteorology

B

20

Α

2010 January 27 22:15 UTC

010/01/27 22:15 I.M.Lensky (BIU)& .Rosenfeld (HUJI)

Open and closed cells under similar meteorology

B

000

0

A

2010 January 27 23:12 UTC

010/01/27 23:12 I.M.Lensky (BIU)& .Rosenfeld (HUJI)

Open and closed cells under similar meteorology

B

000

A

2010 January 28 00:27 UTC

010/01/28 00:27 I.M.Lensky (BIU)& .Rosenfeld (HUJI) Open and closed cells under similar meteorology В A GDAS1 MAF MAP VALID ON: 28 JAN 2010 (+144 HB льтемисчатель инност INFUMMATIUN Initialization time: 00 UTC 22 JAN 2010 H1041.50 $H_{585,80}$ 534.00 540.00 546.00 562.00 668.00 564.00 670.00 676.00 582.00 588.00 HEIGHT (DM) AT HEIGHT: 500. HPA MEAN SEA-LEVEL PRESSURE (HPA)

2010 January 28 01:27 UTC

2010 January 28 02:27 UTC

1.M.Lensky (BIU)& Rosenfeld (HUJI)

Open cells in old air mass С В A Darker purple represents larger re

2010 January 28 03:27 UTC

010/01/28 03:27 I.M.Lensky (BIU)& O.Rosenfeld (HUJI)

Open cells in old air mass С В A Darker purple represents larger r_e

2010 January 28 04:27 UTC

1.M.Lensky (BIU)& Rosenfeld (HUJI)

Open cells in old air mass

С

A

В

Darker purple represents larger re

Advection from land

2010 January 28 05:27 UTC

010/01/28 05:27 I.M.Lensky (BIU)& .Rosenfeld (HUJI)

Open cells in old air mass

С

A

В

When r_e reaches its threshold to produce heavy drizzle, the closed cells change to open cells, as shown next

2010 January 28 06:27 UTC

010/01/28 06:27 I.M.Lensky (BIU)& .Rosenfeld (HUJI)

Open cells in old air mass

C

A

B

When r_e reaches its threshold to produce heavy drizzle, the polluted closed cells transit to open cells, as shown next

2010 January 28 07:27 UTC

I.M.Lensky (BIU)& Rosenfeld (HUJI)

Open cells in old air mass

С

A

В

When r_e reaches its threshold to produce heavy drizzle, the polluted closed cells transit to open cells, as shown next

2010 January 28 08:12 UTC

1010/01/28 08:12 I.M.Lensky (BIU)& Rosenfeld (HUJI)

Open cells in old air mass

С

A

В

When r_e reaches its threshold to produce heavy drizzle, the polluted closed cells transit to open cells, as shown next

2010 January 28 09:12 UTC

Night

2010/01/28 09:12 I.M.Lensky (BIU)&).Rosenfeld (HUJI)

> Ships tracks in open cellsevidence for the sensitivity of the MBL to aerosols

New advection from land

A

2010 January 28 10:12 UTC

010/01/28 10:12 I.M.Lensky (BIU)& .Rosenfeld (HUJI)

Night

Ships tracks in open cellsevidence for the sensitivity of the MBL to aerosols

B

A

E
2010 January 28 11:27 UTC

I.M.Lensky (BIU)& NRosenfeld (HUJI)

> Ships tracks in open cellsevidence for the sensitivity of the MBL to aerosols

> > В

A

Is it a huge "ship track"?

New advection from land

2010 January 28 12:27 UTC

2010/01/28 12:27 I.M.Lensky (BIU)&).Rosenfeld (HUJI)

> Ships tracks in open cellsevidence for the sensitivity of the MBL to aerosols

Remained closed cells with smaller r_e

Advection from land

C

2010 January 28 13:27 UTC

I.M.Lensky (BIU)& Rosenfeld (HUJI)

> Ships tracks in open cellsevidence for the sensitivity of the MBL to aerosols

Remained closed cells with smaller r_e

Advection from land

2010 January 28 14:27 UTC

I.M.Lensky (BIU)& N.Rosenfeld (HUJI)

> Ships tracks in open cellsevidence for the sensitivity of the MBL to aerosols

Remained closed cells with smaller r_e

Advection from land

С

2010 January 28 15:27 UTC

010/01/28 15:27 I.M.Lensky (BIU)&).Rosenfeld (HUJI)

> Ships tracks in open cellsevidence for the sensitivity of the MBL to aerosols

Remained closed cells with smaller r_e

Advection from land

С

А

2010 January 28 16:27 UTC

I.M.Lensky (BIU)& N.Rosenfeld (HUJI)

> Ships tracks in open cellsevidence for the sensitivity of the MBL to aerosols

Remained closed cells with smaller r_e

Advection from land

С

2010 January 28 17:27 UTC

I.M.Lensky (BIU)& N.Rosenfeld (HUJI)

> Ships tracks in open cellsevidence for the sensitivity of the MBL to aerosols

> > В

A

Remained closed cells with smaller r_e

Advection from land

Nigh

2010 January 28 18:27 UTC

010/01/28 18:27 I.M.Lensky (BIU)& .Rosenfeld (HUJI)

> Ships tracks in open cellsevidence for the sensitivity of the MBL to aerosols

Remained closed cells with smaller r_e

Advection from land

С

B

gg

2010 January 28 19:27 UTC

010/01/28 19:27 I.M.Lensky (BIU)& D.Rosenfeld (HUJI)

> Ships tracks in open cellsevidence for the sensitivity of the MBL to aerosols

Remained closed cells with smaller r_e

Advection from land

B

2010 January 28 20:27 UTC

1010/01/28 20:27 I.M.Lensky (BIU)& Rosenfeld (HUJI)

> Ships tracks in open cellsevidence for the sensitivity of the MBL to aerosols

Remained closed cells with smaller r_e

Advection from land

С

2010 January 28 21:27 UTC

010/01/28 21:27 I.M.Lensky (BIU)& .Rosenfeld (HUJI)

> Ships tracks in open cellsevidence for the sensitivity of the MBL to aerosols

Remained closed cells with smaller r_e

2010 January 28 22:27 UTC

010/01/28 22:27

I.M.Lensky (BIU) & D.Rosenfeld (HUJI) Ships tr

Ships tracks in open cellsevidence for the sensitivity of the MBL to aerosols

A

Remained closed cells with smaller r_e

2010 January 28 23:27 UTC

2010 January 29 00:27 UTC

2010 January 29 01:27 UTC

2010 January 29 02:27 UTC

2010 January 29 03:27 UTC

2010 January 29 04:27 UTC

2010 January 29 05:27 UTC

2010 January 29 06:27 UTC

2010 January 29 07:27 UTC

2010 January 29 08:27 UTC

2010 January 29 09:27 UTC

2010 January 29 10:27 UTC

2010 January 29 11:27 UTC

2010 January 29 12:27 UTC

2010 January 29 13:27 UTC

2010 January 29 14:27 UTC

Maritamization

2010 January 29 15:27 UTC

Maritamization

2010 January 29 16:12 UTC

Maritamization

Maritimization

Can aerosols close open cells?

Can aerosols close open cells?

18/1/06 14:30 UTC MODIS AQUA

A seeding device of sub-micron sea salt particles, as illustrated and proposed by Salter and Latham in

Summary

- On the transitions between open and closed cells a large change in cloud drop number concentrations and respective CCN are observed, incurring a differential RCE > 100 wm⁻².
- 2. Only 26% s albedo effect, 32% LWP effect, and 43% cloud cover effect.
- 3. The ship tracks can close open cells over large areas. Then the CRE becomes CRF.
- Continents in fact behave like huge ships in the ocean. Aerosols from land delay the opening of closed cells over large ocean areas.
- 5. This can potentially create vast closed cells areas which are presently not recognized as originated from aerosol perturbations.

MODIS AQUA 27 Jan 2003