Approaches to observe the anthropogenic aerosol indirect effect

Johannes **Quaas**

Institute for Meteorology · Universität Leipzig johannes.quaas@uni-leipzig.de · www.uni-leipzig.de/~quaas

Acknowledgements

Ribu Cherian (Universität Leipzig) and Karsten Peters (Monash University, Melbourne)

Effect of aerosols on clouds

\rightarrow Based on theory (Köhler equation)

in thermodynamic equilibrium

S – saturation ratio

(saturation vapour pressure above solution droplet vs. saturation vapour pressure over flat water surface) ↔ relative humidity

r – haze droplet radius

- B aerosol term
 - \rightarrow dependent on aerosol mass ~ $r_{_{\! a}}{}^3$
 - \rightarrow dependent on solubility.

UNIVERSITÄT LEIPZIG

Critical relative humidity | Statistical/Prognostic schemes | Drizzle problem

Werner, et al., J. Geophys. Res. revised Drizzle problem 3/49

CARRIBA campaign Barbados island, April 2011 16 April: biomass burning 22 April: pristine marine

LWP selected at 80-90 g m⁻²

CARRIBA campaign Barbados island, April 2011 16 April: biomass burning 22 April: pristine marine

LWP selected at 80-90 g m⁻²

LWP selected at 80-90 g m⁻²

but: anthropogenic component is what counts for climate forcing.

	AOD	absorption AOD	Clear-sky radiative perturbation [W m ⁻²]	All-sky radiative forcing [W m ⁻²]
Total	0.180	0.008	-7.3	XXX
Anthropogenic	0.073	0.007	-2.9	-0.7
	41%	88 %	40%	XXX

Data: Monitoring Atmospheric Composition and Climate (MACC) Aerosol re-analysis Approaches to observe the anthropogenic aerosol indirect effect

1) Hemispheric contrast

 Anthropogenic emissions in Northern hemisphere vs. pristine Southern hemisphere

2) Ship tracks

- Anthropogenic emissions in a very pristine environment

3) Weekly cycles

- Larger anthropogenic emissions on weekdays

4) Trends

- Increasing or decreasing anthropogenic emissions

Anthropogenic SO_2 emissions 2010 (0.5° grid)

Aerosol optical depth

UNIVERSITÄT LEIPZIG

UNIVERSITÄT LEIPZIG

UNIVERSITÄT LEIPZIG

Cishcha et al., J. Geophys. Res. 2009 12/49

		r _e	au
Northern Hemisphere	Total	11.0	6.6
	Ocean	11.6	6.4
	Land	8.2	7.8
Southern Hemisphere	Total	11.7	7.4
-	Ocean	12.0	7.4
	Land	9.0	8.6

AVHRR NOAA-9 and NOAA-10; January – April – July – October 1987 and 1988

	Northern hemisphere	Southern hemisphere
Fine-mode aerosol optical depth	0.091	0.055
Droplet effective radius [µm]	10.4	12.9
Cloud optical depth	14.7	12.1

→ Chemistry-transport model simulation (IMPACT) for year 2001, driven by ERA-40 45° S to 45° N over oceans

1. Hemispheric contrast

	Northern hemisphere	Southern hemisphere
Fine-mode aerosol optical depth	0.091	0.055
	0.094	0.061
Droplet effective radius [µm]	10.4	12.9
	12.1	13.0
Cloud optical depth	14.7	12.1
	12.6	12.1

→ Chemistry-transport model simulation (IMPACT) for year 2001, driven by ERA-40 45° S to 45° N over oceans

→ MODIS satellite retrievals

1. Hemispheric contrast

	Northern hemisphere	Southern hemisphere	
Fine-mode aerosol optical depth	0.091	0.055	1
	0.094	0.061	
Droplet effective radius [µm]	10.4	12.9	?
	12.1	13.0	
Cloud optical depth	14.7	12.1	?
	12.6	12.1	

→ Chemistry-transport model simulation (IMPACT) for year 2001, driven by ERA-40 45° S to 45° N over oceans

→ MODIS satellite retrievals

2. Ship tracks

Thick closed-cellular stratocumulus convection

Thin closed-cellular stratocumulus convection

Ship tracks brightening clouds (albedo effect?)

Ship tracks filling open cells (lifetime effect?)

Open-cellular convection

SO₂ emissions from ships

colour code: SO2 ship emissions (log scale)

Indirect effect: cloud droplet radius decrease?

Expected idealised indirect effect result:

 \rightarrow Cloud droplet radius decreases due to pollution

Indirect effect: cloud droplet radius decrease?

Expected idealised indirect effect result:

 \rightarrow Cloud droplet radius decreases due to pollution

UNIVERSITÄT LEIPZIG

Indirect effect: cloud droplet radius decrease?

Indirect effect: cloud droplet radius decrease? cloud liquid water path increase?

Radiation flux changes?

cloud liquid water path increase?

\rightarrow Caveat:

in model simulations no clear signal either (despite global mean forcing up to -1.9 Wm⁻² due to ship emissions alone)

UNIVERSITÄT LEIPZIG

Observations

MODIS Terra MODIS Aqua

MODIS Terra MODIS Aqua

Model experiment Model control

MODIS Terra MODIS Aqua

Model experiment Model control

Cloud droplet number concentration (1st indirect aerosol effect)

MODIS Terra MODIS Aqua

Model experiment Model control

UNIVERSITÄT LEIPZIG

Cherian, Quaas, Salzmann and Wild, submitted to Geophys. Res. Lett. 33/49

Cherian, Quaas, Salzmann and Wild, submitted to Geophys. Res. Lett. 34/49

CMIP5 Climate model results

historical run 1990 – 2005 SSTClim and SSTClimAer for adjusted forcing

UNIVERSITÄT LEIPZIG

CMIP5 Climate model results

historical run 1990 – 2005 SSTClim and SSTClimAer for adjusted forcing

CMIP5 Climate model results

historical run 1990 – 2005 SSTClim and SSTClimAer for adjusted forcing

Observations from the Global Energy Balance Archive (all-sky; range: statistical trend uncertainty)

CMIP5 Climate model results

historical run 1990 – 2005 SSTClim and SSTClimAer for adjusted forcing

Observations from the Global Energy Balance Archive (all-sky; range: statistical trend uncertainty)

Inferred **effective forcing** -1.3±0.4 Wm⁻² (same as AR4, stronger than AR5)

Ruckstuhl, Norris, Philipona, J. Geophys. Res. 2010 see also Norris and Wild, J. Geophys. Res. 2007 39/49

Ruckstuhl, Norris, Philipona, J. Geophys. Res. 2010 see also Norris and Wild, J. Geophys. Res. 2007 40/49

UNIVERSITÄT LEIPZIG

Weather modification?

<u>Aerosol forcing – cloud radiative effect</u>

Global-mean cloud radiative effect (solar) ~ 50 Wm⁻²

Global-mean aerosol indirect radiative forcing (solar) ~ -2 to 0 Wm^{-2}

 \rightarrow search for maximum 4% effect

- Clear observational evidence for aerosol-cloud interactions → from aircraft statistics, but also from satellite
- Strong anthropogenic contribution to aerosol loading and (direct) forcing
- Hemispheric contrast in cloud optical depth small
 - → despite strong aerosol contrast
 - → despite evident effective radius contrast
- Ship tracks not distinguishable at large scale
 - → despite clear visibility in certain cases
 - → but: small signal-to-noise ratio also in simulations
- Weekly cycle in cloud and radiation invisible → despite clear cycle in aerosol- and droplet concentrations
- Solar dimming and brightening trends useful mostly for direct forcing, much less clear for cloudy-sky forcing

- Clear observational evidence for aerosol-cloud interactions → from aircraft statistics, but also from satellite
- Strong anthropogenic contribution to aerosol loading and (direct) forcing
- Hemispheric contrast in cloud optical depth small
 → despite strong aerosol contrast
 → despite evident effective radius contrast
- Ship tracks not distinguishable at large scale
 - → despite clear visibility in certain cases
 - → but: small signal-to-noise ratio also in simulations
- Weekly cycle in cloud and radiation invisible → despite clear cycle in aerosol- and droplet concentrations
- Solar dimming and brightening trends useful mostly for direct forcing, much less clear for cloudy-sky forcing

- Clear observational evidence for aerosol-cloud interactions → from aircraft statistics, but also from satellite
- Strong anthropogenic contribution to aerosol loading and (direct) forcing
- Hemispheric contrast in cloud optical depth small
 - → despite strong aerosol contrast
 - → despite evident effective radius contrast
- Ship tracks not distinguishable at large scale
 - → despite clear visibility in certain cases
 - → but: small signal-to-noise ratio also in simulations
- Weekly cycle in cloud and radiation invisible → despite clear cycle in aerosol- and droplet concentrations
- Solar dimming and brightening trends useful mostly for direct forcing, much less clear for cloudy-sky forcing

- Clear observational evidence for aerosol-cloud interactions → from aircraft statistics, but also from satellite
- Strong anthropogenic contribution to aerosol loading and (direct) forcing
- Hemispheric contrast in cloud optical depth small
 - → despite strong aerosol contrast
 - → despite evident effective radius contrast
- Ship tracks not distinguishable at large scale
 - → despite clear visibility in certain cases
 - → but: small signal-to-noise ratio also in simulations
- Weekly cycle in cloud and radiation invisible → despite clear cycle in aerosol- and droplet concentrations
- Solar dimming and brightening trends useful mostly for direct forcing, much less clear for cloudy-sky forcing

- Clear observational evidence for aerosol-cloud interactions → from aircraft statistics, but also from satellite
- Strong anthropogenic contribution to aerosol loading and (direct) forcing
- Hemispheric contrast in cloud optical depth small
 - → despite strong aerosol contrast
 - → despite evident effective radius contrast
- Ship tracks not distinguishable at large scale
 - → despite clear visibility in certain cases
 - → but: small signal-to-noise ratio also in simulations
- Weekly cycle in cloud and radiation invisible → despite clear cycle in aerosol- and droplet concentrations
- Solar dimming and brightening trends useful mostly for direct forcing, much less clear for cloudy-sky forcing

- Clear observational evidence for aerosol-cloud interactions → from aircraft statistics, but also from satellite
- Strong anthropogenic contribution to aerosol loading and (direct) forcing
- Hemispheric contrast in cloud optical depth small
 - → despite strong aerosol contrast
 - → despite evident effective radius contrast
- Ship tracks not distinguishable at large scale
 - → despite clear visibility in certain cases
 - → but: small signal-to-noise ratio also in simulations
- Weekly cycle in cloud and radiation invisible → despite clear cycle in aerosol- and droplet concentrations
- Solar dimming and brightening trends useful mostly for direct forcing, much less clear for cloudy-sky forcing