A joint retrieval of aerosol and sea surface temperature from AATSR

Haiyan Huang, Don Grainger, Gareth Thomas, *Adam Povey*

Atmospheric, Oceanic, and Planetary Physics, University of Oxford, Oxford

Remote sensing of atmospheric aerosol workshop

Sea surface temperature

- SST is closely related to the Earth's energy balance, atmospheric and oceanic circulation patterns and anomalies. It is widely used to describe ocean circulation and dynamics.
- The interactions between the ocean and atmosphere, which take place via the uppermost layer of ocean, include the exchanges of long wave radiation, momentum, heat associated with evaporation and condensation.

Sea surface temperature

Thursday – December 19th, 2013

Remote sensing of atmospheric aerosol workshop

Remote sensing of atmospheric aerosol workshop

Sea surface temperature

- Frequently estimated using a "coefficient" method, $SST = a_0 + \sum a_i BT_i$
- Coefficients derived empirically from a regression of in situ observations and satellite brightness temperatures.
 - The impact of the mean aerosol loading is considered within these coefficients.

Alteration of ORAC

- IR forward model added to the aerosol processor
 - Inputs are 0.55, 0.67, 0.87, 1.60, 11 and 12 μm from both views of ATSR
 - Retrieved quantities are AOD at 0.55, effective radius, layer height, surface albedo at 0.55, 0.67, 0.87, and 1.6, and surface temperature.

Impact of atmospheric gases

Alteration of ORAC

- IR forward model added to the aerosol processor
 - Inputs are 0.55, 0.67, 0.87, 1.60, 11 and 12 μm from both views of ATSR
 - Retrieved quantities are AOD at 0.55, effective radius, layer height, surface albedo at 0.55, 0.67, 0.87, and 1.6, and surface temperature.
- Use of RTTOV to calculate impact of atmospheric gases on observations
 - H₂O, CO₂, HNO₃, and CFCs most important

Example results

A few orbits from Sep 2008

Remote sensing of atmospheric aerosol workshop

Thursday – December 19th, 2013

Monthly mean for June 2006

Remote sensing of atmospheric aerosol workshop

SST validation against radiometer

Remote sensing of atmospheric aerosol workshop

SST validation against radiometer

Ship tracks of the Pride of Bibao for Feb 2006 to Dec 2008.

Remote sensing of atmospheric aerosol workshop

SST validation against radiometer

Global distribution of SST difference for 2006

Remote sensing of atmospheric aerosol workshop

Global distribution of SST difference for 2006 for wind speed < 6ms⁻¹

Remote sensing of atmospheric aerosol workshop

Remote sensing of atmospheric aerosol workshop

Thursday – December 19th, 2013

Median difference, RMS difference, number of points, and correlation coefficient by region.

Remote sensing of atmospheric aerosol workshop

SST uncertainty as a function of retrieved AOD

Remote sensing of atmospheric aerosol workshop

SST uncertainty as a function of column water vapour

Remote sensing of atmospheric aerosol workshop

Error analysis

Contribution to SST uncertainty from calibration noise and bias, species profiles, emissivity, RTTOV errors, and the modified Planck function.

Remote sensing of atmospheric aerosol workshop

Comparison to GlobAEROSOL

GLOBAEROSOL

ORAC-GLOBAEROSOL

Monthly means from Sep 2008

Remote sensing of atmospheric aerosol workshop

Comparison to GlobAEROSOL

Median difference, RMS difference, number of points, and correlation coefficient by region.

Remote sensing of atmospheric aerosol workshop

Comparison to AERONET

Comparison to **AERONET**

Retrievals averaged over 30 minutes and 30 km of an AERONET site during June 2008

Remote sensing of atmospheric aerosol workshop

Comparison to AERONET

The same, but for September 2008

Remote sensing of atmospheric aerosol workshop

Conclusions

- The ORAC algorithm has been adapted to simultaneously retrieve SST and AOD.
- SST uncertainties of ±0.3 K, in line with the design specification of AATSR.
- Aerosol retrievals requires further work, but are of a similar standard to previous results from ORAC.
- This system will be integrated with the Aerosol and Cloud CCI algorithms over the coming months.