Improved representation of marine stratocumulus clouds in ECHAM6-HAM2 and resulting changes in the anthropogenic aerosol effect

David Neubauer, Ulrike Lohmann, Corinna Hoose, Grazia M. Frontoso

18 December 2013

Remote sensing of atmospheric aerosol, clouds and aerosol-cloud interactions, Bremen

Der Wissenschaftsfonds.

Marine stratocumulus clouds

nstitute for Atmospheric and Climate Science

Importance of marine stratocumulus clouds

Adapted from Williams and Webb, 2009

nstitute for

Anthropogenic aerosol effect

- Uncertainty sources of anthropogenic aerosol effect
- Natural/anthropogenic emissions most important
- Aerosol processes cause 14% of variance
- Low-level stratified clouds from ISCCP data

nospheric and Climate Science

Ф

nstitut

Improved representation of marine stratocumulus clouds in ECHAM6-HAM2

- Physical properties:
 - Reduction of turbulent mixing in stable conditions
- Microphysical properties:
 - Aerosol processing
- Model simulations:
 - 5 years in T63L31
 - AMIP simulations

mospheric and Climate Science

nstitut

Analysis of GCM clouds

Stratocumulus regimes sampled from environmental conditions:

based on dynamic and/or thermodynamic regimes

(Tselioudis et al. 2000; Norris and Weaver2001; Tselioudis and Jakob 2002; Bony et al. 2004; Williams et al. 2006; Medeiros and Stevens 2011)

Stratocumulus regimes sampled by cloud characteristics:

cluster analysis method e.g. applied to τ -CTP histograms of cloud amount

(Jakob and Tselioudis 2003; Gordon et al. 2005; Williams and Tselioudis 2007; Zhang 2007; Williams and Webb 2009; Tsushima et al. 2012)

ERA-Interim/ECHAM6-HAM2

- Similar areas as in re-analyis data
- Less frequent/persistent
- Two uncertainty sources:
 - 1. frequency of occurence
 - 2. in-regime uncertainty

- Definition of stratocumulus regions:
 - 1. LTS ≥ 18.55 K
 - 2. w500 \ge 10 hPa day⁻¹
- CFMIP Observation Simulator
 Package (COSP)

Low clouds

CALIPSO is taken as reference

Atmospheric and Climate Science

nstitute fo

- Fewer low coulds in ISCCP data
- Underestimation by COSP-ECHAM6-HAM2

8

Liquid water path (LWP)

Cloud radiative effect (CRE)

Atmospheric and Climate Science nstitute fo

Vertical profiles

nstitute for Atmospheric and Climate Science

- 'sharp' stability functions only over the ocean
 leeds to improved operational verification
 scores without degrading the model skill
 (Brown et al. 2008)
- More cloud liquid water in stratocumuli regions in ECHAM6 (Felix Pithan; MPI-M; pers. comm.) with 'sharp' stability functions

$$K_{\rm turb} = l * S * \sqrt{TKE}$$

Ri= potential energy/ kinetic energy

Atmospheric and Climate Science nstitute for

Aerosol processing

- Explicit representation of aerosol particles in cloud droplets and ice crystals in stratiform clouds (Hoose et al. 2008a,b)
- Uptake of aerosol by nucleation and collision scavenging
- Aerosol mass transfers by freezing and evaporation of cloud droplets and melting and sublimation of ice crystals
- Aerosol particles from evaporating cloud particles and precipitation are released to modes which correspond to their size

Aerosol processing

Atmospheric and Climate Science nstitute for

Anthropogenic aerosol effect

Large anthropogenic aerosol effect in stratocumulus regions

Atmospheric and Climate Science nstitute fo

Anthropogenic aerosol effect

Atmospheric and Climate Science nstitute foi

Summary

- Stratocumulus clouds are important for the climate but difficult to simulate in GCMs because of the sharp inversion
- Sharp stability function improves cloud cover in stratocumulus regions
- Dependence of anthropogenic aerosol effect on changes in stratocumulus clouds in ECHAM6-HAM2

Outlook

- Moist conserved variables
- Vertical resolution
- Reconstruction/restricted method by Grenier and Bretherton (2001), Siegenthaler-Le Drian (2010)
- Improved drizzle scheme

Thank you for your attention!

Importance of marine stratocumulus clouds

- Vast "climate refrigerators" of the Tropics and subtropics (Bretherton et al., 2004)
- Uncertainties in the warming by doubling CO₂ corresponds to the feedback of low clouds
 (Stephens, 2005)

Cloud fraction (CF)

High clouds

- CALIPSO is taken as reference
- Underestimation by ISCCP
- Underestimation by COSP-ECHAM6-HAM2

Atmospheric and Climate Science nstitute for

24

Mid level clouds

- Very High ISCCP mid cloud fraction
- Underestimation by COSP-ECHAM6-HAM2

Atmospheric and Climate Science nstitute for

Net cloud radiative effect

- Net cloud radiative effect is too negative as the longwave cloud radiative effect is too low when stratocumulus are present
- Too few high/ice clouds in ECHAM6-HAM2
- Shortwave cloud radiative effect agrees well

- Large scale subsidence can lead to stable conditions/an inversion at the top of the PBL
- Turbulence entrainment counteracts subsidence
- More mixing than observed for 'long-tails' stability functions at high stabilities

27

Vertical resolution

 16 additional vertical levels in the boundary layer

Atmospheric and Climate Science

nstitute fo

- Turbulent kinetic energy (TKE) scheme good for dry boundary layer
- Also for cloud topped PBL at high vertical resolution (SCM)

Vertical resolution

Atmospheric and Climate Science nstitute fo

Vertical resolution

nstitute for Atmospheric and Climate Science

Aerosol processing

nstitute for Atmospheric and Climate Science

Parameterization of convection

•

Frequency of shallow convection 90N 60N 30N 0 30S60S90S180 150W 30E 90E 120E 150E 180 60E 1201 301 0.2 0.4 0.6 0.8 1 0

ECHAM6-HAM2 (ref)

ECHAM6-HAM2 (ref)

- Too frequent shallow convection in ECHAM6-HAM2
- Shallow convection scheme active in stratocumulus regions

Observation figure adapted from Isotta et al., 2011

No precipitation

- Simulation with no precipitation in stratocumulus cloud regions
- Increased liquid water path, cloud optical depth and shortwave cloud radiative effect
- Net cloud radiative effect more negative
- Very small increases in cloud frequency/cloud cover

Anthropogenic aerosol effect

- Weaker aerosol effect
- Especially with aerosol processing as the background aerosol load is increased

Anthropogenic aerosol effect

• Similar results in stratocumulus regions as global

Moist conserved variables

- Turbulent mixing 'smoothes' mixing ratio profiles of nonconserved variables → less stratocumuli
- Moist conserved variables: total mixing ratio $q_t = q_v + q_l$ and moist static energy $s_l = c_p T + gz - L_v q_l - L_s q_i$

Moist conserved variables

LWP MCV - LWP ref ECHAM6-HAM2

Atmospheric and Climate Science nstitute for

Grid refinement

- ECHAM-turbulence scheme is principally capable to reproduce mixing and entrainment at high resolution but fails at coarse resolution (Lenderink and Holtslag, 2000)
- 'numerical entrainment' at coarse resolution keeps the cloud top
 'locked in' (Lenderink and Holtslag, 2000; Lock, 2001)

Figure from Siegenthaler-Le Drian, 2010

Grid refinement

 Based on reconstruction/restricted method by Grenier and Bretherton (2001), Siegenthaler-Le Drian (2010)

Grid refinement

- Prognostic and reconstruction method by Grenier and Bretherton (2001) provide good SCM simulations of cloud-topped and dry PBLs at coarse GCM resolution
- Chlond et al., 2004 find significant improvements when using an explicit entrainment parameterization and an inversion following coordinate level in the ECHAM4-SCM
- Cloud top radiative cooling depends on model resolution (Stevens et al., 1999)