

Oxygen A-band spectrometry of cloud fields: recent advances

L. Lelli, A. A. Kokhanovsky, V. V. Rozanov, M. Vountas, and J. P. Burrows

luca@iup.pyhsik.uni-bremen.de

Institute of Environmental Physics and Remote Sensing University of Bremen

17 December 2013, Bremen, Germany

Instruments Oxygen A-band Algorithm ENSO on the record Trend model and time series Global and regional trends Aerosol height in the O₂ A-band: case study

Instruments

GOME (320 x 40 km) SCIAMACHY (60 x 40 km) GOME-2 (80 x 40 km)

TROPOMI (7 x 7 km) 1.8 x 1.8 km O₂ A-band

Today: Friday 17.12.2013

Timeline	n			
	GOME ERS-2	SCIAMACHY ENVISAT	GOME-2 METOPs	TROPOMI S-5 p
LT	10h30	10h00	9h30	13h30
Global coverage	3 days	6 days	1.5 days	1 day
Time span	1996 - 2010	2002 - 2012	2007 - 2021	2015 - 2022
Swath	960 km	1000 km	1920 km	2600 km
Spectral coverage	290-800 nm	240-2400 nm	290-800 nm	270-775 nm + SWIR
Spectral resolution	0.38 nm	0.44 nm	0.48 nm	0.25-0.55 nm
Polarization channels	Зр	6р	15(s,p)	

Wavelength [nm]

Rozanov and Kokhanovsky, JQSRT (2004)

 \rightarrow

SACURA inverse

$$\begin{array}{c}
I \quad \text{Earthshine} \\
\hline \vec{E}_{0} \text{ Sun spectrum} \\
\hline \vec{E}_{0} \text{ Sun spectrum} \\
\hline \hline \vec{E}_{0} \text{ Sun spectrum sp$$

- ➡ 758 nm Cloud Optical Thickness Cloud Spherical Albedo
- ⇒761 nm Cloud Top Height hCloud Geometrical Thickness l
- ➡ 67 spectral points
- Reflectances normalized to R(758 nm)
- Effective single scattering albedo value throughout the cloud iteratively found (Yanovitskij, 1997)

Rozanov and Kokhanovsky, JGR (2004), Lelli et al., AMT (2012)

Validation with synthetic data

- Cloud top/bottom height ± 400 m
- Cloud optical thickness ±20% (COT > 5, Surface albedo < 0.4)
- Cloud spherical albedo ±10% (COT > 5)
- Clouds as Lambertian scattering layers not adequate
- Surface as Lambertian adequate for more than 70% of the cases
- Double-layered cloud for better filtering

Validation with real data

- Ground-based radar
- Satellite-based
 ATSR-2 (GRAPE, IR-technique)
 GOME/GOME-2 (FRESCO, O₂ A-band)
 GOME (ROCINN, O₂ A-band)

Validation: Rozanov and Kokhanovsky, JGR (2004), Rozanov et al. TGRS (2004), Kokhanovsky et al. ASR (2005), Nauss et al., Atm Res (2005), Kokhanovsky et al., ACP (2006), Lelli et al., AAPP (2011), Lelli et al., AMT (2012)

CTH time series

CTH autocorrelation

Bootstrapping (Efron and Tibshirani, 1993; Mudelsee, 2010)

Correlation coefficients

All clouds CTH **+ 0.77** CF **+ 0.31**

Cloud Top Height HIGH clouds + 0.55 MID clouds + 0.56 LOW clouds + 0.29

Cloud Fraction HIGH clouds + 0.53 MID clouds - 0.31 LOW clouds - 0.55

ENSO

ENSO

^a The GSG trends are recalculated for the length of the referenced dataset and latitude belt $\pm 60^{\circ}$.

^b Davies and Molloy (2012).

^c Evan and Norris (2012).

^d Loyola et al. (2010).

^e Extrapolated to decade.

Trend β [m/yr]

Trend β standard deviation [m/yr]

Trend β standard deviation [m/yr]

CTH, H₂O trends

EC-Earth (Hazeleger et al., 2012, 2011) Atmospheric only run

at T255L62 (0.7deg) forced with CMIP5 GHG, aerosols, O3m insolation and volcanoes, SST and sea-ice from ERA-Interim

Spatial correlation of cloud cover with ENSO index

El Niño

Courtesy of U.Willén (SMHI, Sweden)

MISR RGB image 7 May 2010

ALH in the O₂ A-band

Summary

1. Cloud top height (at monthly sampling) is **not persistent** and the trend is **normally** distributed

- 2. ENSO pulls clouds to lower altitudes (**negative** feedback)
- 3. Global CTH trends of **opposite sign** over **ocean** / **land**
- 4. No clear synoptic patterns (yet) of statistical significance (at 95% CI)
- 5. Increase (decrease) in $H_2O >>>$ Soot production

>>> significant (not significant) CTH trend

Have your say: Lelli et al., 2013, ACPD

Outlook

- Cloud record extension: MetOp-B/C, Sentinel 5-p (beyond 2020)
 Increased spatial resolution >>> more single-layered clouds
- 3. **Plane parallel** model to be improved >>> 3D + adjacency effects
- 4. Untangle **meteorology**: process- and attribution-oriented study

Backup slides

Validation (1): model errors

Validation (3): GOME - ROCINN

Validation (4) GOME-2: FRESCO

Double-layered cloud system

