simple aerosol representations in a global and seasonal context to address aerosol direct and indirect radiative effects

S.Kinne

MPI-Met Hamburg

overview

- it's about regional and seasonal distributions
 (although also global averages are calculated)
- aerosol climatology
 - amount, absorption, size (AOD, SSA, ASY)
 - associated CCN (and IN)
- aerosol radiative impacts
 - aerosol direct effect 0.35 W/m2 (TOA, all-sky)
 - aerosol indirect effect 0.75 W/m2 (TOA, all-sky)

... and the combined effect is smaller than the sum

AOD climatology half in coarse sizes (>1µm) – half in fine sizes (<1µm)

total vs. COarse vs. fine input for radiative transfer simulations

amount / not absorbed / size input for radiative transfer simulations

AOD: natural vs anthropogenic ~ 2 (.09) to 1 (.04) ratio

anthropogenic AOD highest during NH summer

direct radiative effects overview with annual maps

direct anthropogenic effects clear-sky vs all-sky ... TOA vs surface

direct forcing: ... - 0.35 W/m2 strongest regional contrasts in NH spring

surface effect: - 1.9 W/m2 strongest reductions in NH summer

atmos effect: + 1.6 W/m2 solar warming by anthropogenic aerosol

BC sensitivities

- estimating forcing component contributions
- BC
 - translate all fine-mode absorption in BC-AOD
 - too high ... ignoring OC contribution
 - too low ... ignoring BC contributions in the coarse size mode
- BC forcing estimates
 - clear-sky + 0.25 W/m2
 - all-sky + 0.35 W/m2

SU sensitivities

- estimating forcing component contributions
- SU
 - multiply the anthr. AOD with sulfate fine-mode fraction (.040 → .024), presribe sulfate SSA
 - prescribe sulfate with r,eff=0.2 μ m for .024 AOD
- SU forcing estimates
 - clear-sky 1.0 W/m2
 - all-sky 0.7 W/m2

sensitivities

indirect radiative effects

- simple sensitivities ... what if
 - low cloud droplet # is evenly factor-increased
 - in a 'C5' cloud from 10.5 to 9 μm :
 - in a 'C1' cloud from 6 to 5 μ m:
 - in log-normal from 10 to 7.4 μ m:
 - In log-normal from 10 to 9.5um:
- 1.75 * more drops1.88 * more drops2.47 * more drops
- 1.18 * more drops

(In4)

(In5)

- now with more realistic changes ...
 - droplet increases ... based on (tot/nat) -ratios
 using anthrop. CCN and natural CCN at 1km
 - (ant /m3 +nat /m3) /nat /m3 all CCN → drops (lin)
 - In(1+(ant+nat)/10^4) / In(1+nat/10^4)

choice • In(1+(ant+nat)/10^5) / In(1+nat/10^5)

1.75 * more drops in a C5 cloud no changes to liquid water in low clouds

1.88* more drops in a C1 cloud no changes to liquid water in low clouds

1.88* more drops in a C1 cloud SW TOA effect by season

2.47* more drops in a In cloud no changes to liquid water in low clouds

2.47* more drops in a ln cloud SW TOA effect by season

1.18* more drops in a In cloud no changes to liquid water in low clouds

1.18* more drops in a In cloud no changes to liquid water in low clouds

towards aerosol indirect forcing using climatology predicted CCN concentrations

- quantifying CCN ... requires
 - the vertical distribution (AOD \rightarrow ext.)
 - the fine-mode size-distribution (ignore Aitken)
 - the aerosol composition (via 'kappa' hygro.)
 - the anthrop. fraction of the fine-mode
 - → critical radius (as function of SS)

– all sizes > critical radius (at base) become CCN

- all CCN activate as cloud droplet
 - CCN # at cloud base are applied to low cloud
 - droplet radii are reduced by CCN # increase
 - no changes to cloud liq.water content allowed

CCN / IN are concentrations applied information on AOD vertical distribution

other important ingredients kappa →size , anthrop. fraction in fine-mode

anthrop? ← depends on pre-industrial 3 models ... three suggestions

CCN / IN concentrations (log10 scale) for different supersaturations and altitudes

natural CCN (log10 scale) at low altitude cloud base

natural CCN at low altitude cloud base

anthropogenic CCN (log10 scale) at low altitude cloud base

anthropogenic CCN at low altitude cloud base (max e

anthropogenic CCN at low altitude cloud base (max set to 800/cm3)

anthropogenic CCN at low altitude cloud base (max set to 800/cm3)

1. experiment

assume that ALL extra anthropogenic CCN ...
 become new cloud droplets

- new CCN = old CCN * ratio
 - ratio = (ant CCN +nat CCN) / (nat CCN)

(antccn+natccn) / natccn - ratios ratio is largely independent on supersaturation

(antccn+natccn) / natccn - ratios for 0.1% super-saturation, seasonal

aerosol Iow cloud indirect effects liquid water remains constant

SW cloud effect: - 5.6 W/m2 seasonal variations

2. experiment

- assume the following CCN to drop conversion
 - ALL CCN become new cloud droplets
 - if CCN concentrations are low
 - a fraction of CCN becomes new cloud droplets
 - if CCN concentrations are high
- new CCN = old CCN * ratio
 - ratio = ln (1 + [ant CCN + nat CCN]/ 10**4)
 / ln (1 + [nat CCN] / 10**4)

CCN in # /m3

In(1+ant+nat) / In(1+nat) - ratios with CCN values (/m) divided by 10000

cloud drop size reductions

aerosol Iow cloud indirect effects liquid water remains constant

aerosol Iow cloud indirect effects liquid water remains constant

3. experiment (best estimate)

- assume the following CCN to drop conversion
 - ALL CCN become new cloud droplets
 - if CCN concentrations are low
 - a fraction of CCN becomes new cloud droplets
 - if CCN concentrations are high
- new CCN = old CCN * ratio
 - ratio = In (1 + [ant CCN +nat CCN]/ 10**5)
 / In (1 + [nat CCN] / 10**5)

CCN in # /m3

In(1+ant+nat) / In(1+nat) - ratios with CCN values (/m) divided by 100000

cloud drop size reductions

aerosol Iow cloud indirect effects liquid water remains constant

aerosol Iow cloud indirect effects liquid water remains constant

direct forcing: ... - 0. W/m2 strongest regional contrasts in NH spring

direct forcing: only - 0.18 W/m2 indirect → brighter clouds → direct is halved

summary

- climatologies
 - of atmospheric and surface properties in combination with off-line radiative transfer:
 - a quick path to explore regional/seasonal or parameter variability in the global contexts
- application-example: aerosol climate impacts
 spatial and temporal variability
 - direct forcing ca 0.35 W/m2 (global avg)
 - indirect forcing ca 0.75 W/m2 (global avg)

... and the combined effect is smaller than the sum

extra slides

- on seasonal details of aerosol direct radiative effects
 - total (SW and LW impacts combined)
 - solar (SW impacts only)
 - note, anthropogenic impacts are a fraction of the solar (SW) impact, as anthropogenic contribution as they may occur to the coarse mode (e.g. dust) are ignored

SW+LW ... at ToA, clear-sky

SW+LW ... at ToA, all-sky

SW ... at TOA, clear-sky what a satellite "sees"

SW ... at surface, all-sky

SW ... at surface, clear-sky

SW ... in atmos, all-sky

