## Direct radiative impact of aerosols for vertical structures of aerosols above clouds.

Theoretical studies and application to absorbing aerosols above water clouds detected by A-Train measurements

### L. Doppler (1,2), D. Josset (3), and J. Fischer (2)

(1) LOA, Université de Lille-1, Villeneuve d'Ascq, France (2) Freie Universität Berlin, Institut für Weltraumwissenschaften, Berlin, Germany, (3) SSAI, NASA LaRC, United States

#### Aerosol direct effect on climate



# 1-D Radiative transfer in the atmosphere: MOMO

- Radiative transfer code MOMO (Matrix Operator Model) -> Fischer and GrassI, AO 1986; Fell and Fischer JQSRT 2001
- k-distribution method (without corr approx) -> Bennartz and Fischer JQSRT 2000; Doppler et al. JQSRT 2014
- Full range: 200 nm 100  $\mu$ m

-> Doppler et al. JQSRT 2013 (in revision)

- Emission, Transmission, scattering, multi-scattering (gas, aerosol, clouds)
- Versatility: Remote sensing, radiative forcing /Heat-Rates

## Outline

- Aerosol radiative forcing / heating rates for clouds and aerosols vertical structures.
- Aerosols above clouds detected by the A-train: case studies for the Guinea Bay and Island Volcanic Ash
- The difficulties of simulating the aerosol/clouds mixed layers.

## Simple aerosol layer above cloud

#### TOA radiative forcing (black ocean, SZA = 30°)

[W.m–2], Aerosol radiative Forcing, TOA



Also: *Keil and Haywood, JGR 2003* 

## Simulations on 24 theoretical structures





**Ocean (dark surface)** 

## **Aerosol Model**

OPAC aerosol model (mix of water soluble = 21.4%, insoluble = 0.12% and soot = 78.6%)
 → Mie code gives the associated phase function and SSA



## **TOA Aerosol direct radiative forcings SW**



**Ocean (dark surface)** 

## **TOA Aerosol direct radiative forcings LW**

Everywhere heating, low values (excepted the cloud-free case)



**Ocean (dark surface)** 

## First conclusions

- Vertical structure => define sign and order of magnitude of radiative forcing
- Unlinearity: mean(forcings(different structures))
- ≠ forcing(mean structure)
- Caution: GCM, maps of forcing, with grid approach!!
  Study the structure variability within a grid-cell !

## BB aerosol above clouds (Guinea Bay)



- Josset, Doppler et al.
  2012, IRS, Berlin
- Case study 11/08/2007, from -30° to 5° (lat)



- Instruments: Lidar CALIOP (CALIPSO), radar (Cloudsat), radiometer MODIS (Aqua), MSG.
- Method: Satellite synergy, MOMO RT scheme
- **Objective:** Radiative impact of BB aerosols above clouds

#### Vertical profile of Heating Rates

Inputs





## **Radiative forcings**



- Result: Presence of clouds (COT > 6) change the sign of the aerosol radiative forcing (*Haywood and Shine* 1997).
- Limitation: Discrimination aerosol/clouds. => Need POLDER!

## Volcanic Ash above water clouds: the **Eyjafjallajökull volcano eruption**

- Between Scotland and Island, 6 Mai 2010
- Same instruments as for the Guinea Bay study:
- MODIS
- CloudSat
- CALIPSO (lidar)
- MSG
- In addition:
- CALIPSO (IIR)
- PARASOL (Polder)



 Poster of D. Josset (Josset, Pelon, Garnier, Hu, Waquet, Doppler, Riedi, Fischer, Dubuisson, Zhai), AGU 2013.

## Volcanic Ash: Macroscopic properties

SSA Ext norm G Large particles 1.0 1.2  $\Rightarrow$  Influence in LW 1.0 0.8 **Non-Spherical particles** 0.8  $\Rightarrow$  Mie Code not 0.6 ext\_norm (550nm SSA, G 0.6 appropriated 0.4 (Henyey-Greenstein) 0.4 0.2 The AOD (close to 1) are 0.2 much larger than during 0 000 the BB aerosols event in 0.20 0.32 0.50 0.80 1.26 3.17 5.02 7.96 12.62 20.00 2.00[micm], wvl **Guinea Bay** 

## Results, volcanic ash



- Much larger values than for the BB events in SW.
- Longwave cannot be neglected.



- Again, the presence of clouds change the sign of the forcing
- LW is responsible of 10 to 15% of the forcing

## Second conclusions

- Synergy of satellite observations allows the characterization the vertical structure
- All inputs of RT code are provided
- Importance of the polarization for the discrimination
- RT code MOMO allows the computation of radiative fluxes and radiation budget very well
- Large particle => LW influence also
- Need of RT computing for non spherical particles

## Aerosol and clouds in the same layer

cloud

- Difficulty for the remote sensing
- Difficulty for defining the inputs of the RT code
- Idea: build an "internal mixture" with 10 % aerosols (volume conc) and 90 % clouds (volume conc.). OD total = 22 (Instead of "external mixture" with COD = 20 and AOD = 2)
- Layer between 1 and 2 km of altitude



- SSA close to the SSA of the clouds
- Angström between clouds and aerosols
- High value of the assymetry parameter (front scattering)

## **Results on the reflectance**



- External mixture have a higher reflectance (SSA larger, less absorption more back-scattering)
- The concentration ratio is not optimal but the approximation is consistent for reflectance -> large SSA compensate by large g?

## **Results: Vertical profile of heating rates**



- The (radiative) energy budget is not the same (25 % difference)
- The concentration ratio must be studied with precision
- ???? HOW? ????

### Summary

- 1-D radiative transfer simulations allow to:
- Compute the radiation budget
- Give recommendation to "grid models" (theoretical study)
- Compute radiation budget for real case studies (satellites)
- MOMO is a good tool to realize these simulations (balance precision/rapidity)
- Satellite synergy provides the complete information necessary for the case of aerosol above clouds
- Importance of the microscopy properties (size/shape of aerosol)
- RT code + Satellite measurements fail for layers "mixed" (aerosol + clouds)
  Perspectives
- Develop set of LUT (concentration ratio for OD ratio)?