

The changes in cloud top temperatures observed from satellites: a possible link to aerosol thermodynamic effect?

Abhay Devasthale and Patrik Boström

Research and Development Department

SMHI, Norrköping, Sweden

Abhay.Devasthale@smhi.se

18 Dec 2013, Bremen

Background: Systematic and significant change in aerosol loading over Europe during late 1980s

Percentage change in SO2 emissions (EDGAR)

1990s-1980s

(Umweltbundesamt, 1994)

Can this regime change be used to understand aerosol effect on cloud height?

Earliest mention by Pincus and Baker (1994)

CM-SAF's CLARA-A1 data set

- CLARA-A1 (CM SAF cLoud, Albedo and RAdiation dataset from AVHRR data) (Karlsson et al., 2013).
- Provides global cloud properties for the 28-yr period (1982-2009).
- JJA months of 1985-88 and 1997-00 are analysed here.
- Liquid and mixed phase clouds investigated (selected using cloud phase product).
- Clouds are further screened for possible precipitation.

Change in summertime cloud top temperatures (K)

Apart from aerosols, what other factors could influence cloud height?

Possible change in atmospheric circulation?

Problems due to satellite sensor calibration?

- Intercalibration applied (Heidinger et al, 2012)

Or the results possibly influenced orbital drift?

- nearly same drifting rate for the chosen periods.

Change in surface temperature and humidity?

- increased surface temperatures and humidity may favour invigorated convection.

- But the surface temperatures are in fact warmer in 90s compared to 80s.

Can we verify similar large-scale signature in CTT change at other corners of the globe?

Eastern North America

1990s - 1980s

35N

30N

25N

20N

15N

10N

5N-

Can we verify similar large-scale signature in CTT change at other corners of the globe?

Can we verify similar large-scale signature in CTT change at other corners of the globe?

....

- The observed changes could be a part of the decadal variability.

- Sensitivity to a retrieval algorithm, ancillary data, etc

- Investigating other data sets.

- It is observed that clouds top were colder and higher in the late
 80s over Europe compared to the late 90s.
- Using discounting principle, we argue that only changes in aerosol loadings can explain the observed changes in CTTs.
- The changes in CTTs are consistent across other polluted regions.
- Further analysis of pure ice phase clouds is required.