## Polarimetric aerosol remote sensing using neural networks

A. Di Noia<sup>1</sup>, O. Hasekamp<sup>1</sup>, J. Rietjens<sup>1</sup>, G. van Harten<sup>2</sup>, M. Smit<sup>1</sup>, F. Snik<sup>2</sup>, H. Volten<sup>3</sup>

<sup>1</sup> SRON, Utrecht (NL)

<sup>2</sup> Sterrewacht Leiden

<sup>3</sup> RIVM, Bilthoven (NL)

## SRON

Netherlands Institute for Space Research

# **SPEX:** Spectropolarimeter for planetary exploration

- Innovative measurement concept: spectral modulation
- Linear polarization parameters encoded in radiance spectrum by passive optical components

$$I(\lambda) = \frac{I_0(\lambda)}{2} \left[ 1 \pm P(\lambda) \cos\left(\frac{2\pi\delta(\lambda)}{\lambda} + 2\phi(\lambda)\right) \right]$$



#### **Ground based SPEX instruments**

- Two SPEX exemplars developed so far
  - 1. Prototype operated by SRON, developed for space applications and currently operated from ground
  - 2. Instrument operated by RIVM/Leiden University, dedicated to ground-based observations
- Wavelength ranges: 370-850 nm for SPEX prototype, 360-900 for RIVM SPEX





#### Spectropolarimetric aerosol retrievals at SRON

- Retrieval scheme developed during the last decade
- Variational retrieval based on Phillips-Tikhonov regularization

 $\hat{\mathbf{x}} = \arg\min\{[\mathbf{y} - \mathbf{F}(\mathbf{x}, \mathbf{b})]^T \mathbf{S}_{\epsilon}^{-1} [\mathbf{y} - \mathbf{F}(\mathbf{x}, \mathbf{b})] + \gamma (\mathbf{x} - \mathbf{x}_a)^T \mathbf{H} (\mathbf{x} - \mathbf{x}_a)\}$ 

- Extensively applied to POLDER measurements (presentations by O. Hasekamp and A. Stap during this meeting)
- Retrieval concept extended to ground based observations (SPEX)



#### **Retrieval concept: some details**

• Iterative cost function minimization (Gauss-Newton)

$$J(\mathbf{x}) = [\mathbf{y} - \mathbf{F}(\mathbf{x})]^T \mathbf{S}_{\epsilon}^{-1} [\mathbf{y} - \mathbf{F}(\mathbf{x})] + \gamma (\mathbf{x} - \mathbf{x}_a)^T \mathbf{H} (\mathbf{x} - \mathbf{x}_a)$$
  

$$\mathbf{F}(\mathbf{x}_{i+1}) \approx \mathbf{F}(\mathbf{x}_i) + \mathbf{K}_i (\mathbf{x}_{i+1} - \mathbf{x}_i)$$
  

$$\mathbf{K}_i = \mathbf{F}'(\mathbf{x}_i)$$
  

$$\mathbf{x}_{i+1} = (\mathbf{K}_i^T \mathbf{S}_{\epsilon}^{-1} \mathbf{K}_i + \gamma \mathbf{H})^{-1} [\mathbf{K}_i^T \mathbf{S}_{\epsilon}^{-1} (\mathbf{y} - \mathbf{F}(\mathbf{x}_i) + \mathbf{K}_i \mathbf{x}_i) + \gamma \mathbf{H} \mathbf{x}_a]$$

- Regularization parameter  $\boldsymbol{\gamma}$  heuristically adjusted at each iteration
- First guess provided by look-up table and also used as a priori  $(\mathbf{x}_a)$



## LUT first guess generation

- LUT consists of about 600 aerosol models
- Each model defined by
  - Effective radius (r<sub>eff</sub>)
  - Effective variance (v<sub>eff</sub>)
  - Complex refractive index (m)
  - Fraction of spherical particles (f<sub>spher</sub>) for fine and coarse mode
- First guess generation process
  - 1. Find model that best matches observations
  - 2. Iteratively update fine and coarse mode AOT for the chosen model using the LUT as simplified radiative transfer model



## Looking for a better first guess

- Limitations of LUTs
  - Need for crude interpolations affects first guess quality
  - Need to read in LUT makes retrieval code less efficient
- First guess quality important for successful aerosol retrievals
- Idea to overcome LUTs: use neural networks
  - Fast computations
  - Do not require large memory allocation (after training)
  - Already proven good stand-alone retrieval algorithms
  - Might provide high quality first guesses for variational retrievals as well



## NNs in one slide (ambitious goal)

Feedforward NN input-output function

$$y_k^{(0)} = x_k \qquad k = 1, \dots, N_{in}$$
  
$$y_k^{(l+1)} = \varphi^{(l+1)} \left( \sum_{j=1}^{N_l} w_{jk}^{(l)} y_j^{(l)} + b_k^{(l)} \right)$$
  
$$k = 1, \dots, N_{l+1}, \ l = 0, \dots, N_L - 1$$



- $x_k$  input vector,  $N_L$  number of layers,  $\varphi^{(l+1)}$  nonlinear function for  $l = 0, ..., N_L 2$ , either linear or nonlinear for  $l = N_L 1$
- Goal: adjust {w<sub>jk</sub><sup>(l)</sup>, b<sub>k</sub><sup>(l)</sup>} based on a training set Θ = {(x<sub>p</sub>, t<sub>p</sub>)}, so as to obtain approximately correct outputs even for x∉Θ



#### Neural network design

- Observation vector: log-reflectance and degree of linear polarization at 3 wavelengths, 6 VZA, rel. azimuth angle of 180°
- Auxiliary variables: SZA, surface pressure
- Output vector: 8 retrieved aerosol parameters + surf. albedo at 870 nm
- 7.7 X 10<sup>5</sup> input-output pairs used to train the NN
- Random Gaussian noise added to input vector
  - Log-reflectance noise std: 0.02
  - DLP noise std: 0.005
  - SZA uncertainty: 0.25°
  - Surf. pressure uncertainty: 5 hPa
- Radiometric measurements compressed via linear PCA



#### Validation setup

- NN retrievals validated on 1.65 X 10<sup>5</sup> independent simulations
- 3412 simulations used to compare variational retrieval schemes
  - Retrieval using the LUT as first guess
  - Retrieval using the NN as first guess
- Noise + random differences between non-retrieved quantities and assumed values \_\_\_\_\_\_ pseudo-operational scenario



#### **Results on noisy simulated data**

Fraction of successful retrievals ( $\chi^2 < 2$ ): LUT 21.22%, NN 58.94%

| Parameter                 | RMSE/MAE                  |                           |                           |                           |  |
|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--|
|                           | fguess-LUT                | fullretr-LUT              | fguess-NN                 | fullretr-NN               |  |
|                           |                           |                           |                           |                           |  |
| r <sub>eff</sub> – fine   | 0.221/0.167               | 0.214/0.153               | 0.108/0.066               | 0.115/0.065               |  |
| Re(m) – fine              | 0.129/ <mark>0.107</mark> | 0.115/0.092               | 0.064/ <mark>0.049</mark> | 0.070/0.050               |  |
| Im(m) – fine              | 0.124/0.067               | 0.125/0.067               | 0.079/ <mark>0.034</mark> | 0.081/0.035               |  |
| AOT – fine                | 0.723/ <mark>0.471</mark> | 0.583/ <mark>0.357</mark> | 0.279/ <mark>0.177</mark> | 0.288/0.163               |  |
| r <sub>eff</sub> – coarse | 1.342/1.080               | 1.940/1.245               | 0.972/ <mark>0.753</mark> | 1.145/ <mark>0.839</mark> |  |
| Re(m) - coarse            | 0.092/0.075               | 0.098/ <mark>0.079</mark> | 0.077/0.062               | 0.084/ <mark>0.066</mark> |  |
| Im(m) – coarse            | 0.137/0.076               | 0.136/0.073               | 0.095/ <mark>0.049</mark> | 0.099/ <mark>0.049</mark> |  |
| AOT - coarse              | 0.844/0.549               | 0.909/ <mark>0.511</mark> | 0.295/ <mark>0.193</mark> | 0.348/0.185               |  |



#### Results on noisy sim. data – successful retrievals

Fraction of successful retrievals ( $\chi^2 < 2$ ): LUT 21.22%, NN 58.94%

| Parameter                 | RMSE/MAE                  |                           |                           |                           |  |
|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--|
|                           | fguess-LUT                | fullretr-LUT              | fguess-NN                 | fullretr-NN               |  |
|                           |                           |                           |                           |                           |  |
| r <sub>eff</sub> – fine   | 0.168/0.118               | 0.146/0.087               | 0.096/0.059               | 0.100/0.055               |  |
| Re(m) – fine              | 0.129/0.108               | 0.092/ <mark>0.069</mark> | 0.059/ <mark>0.045</mark> | 0.061/ <mark>0.044</mark> |  |
| Im(m) – fine              | 0.099/ <mark>0.043</mark> | 0.098/ <mark>0.042</mark> | 0.071/0.031               | 0.073/0.032               |  |
| AOT – fine                | 0.451/0.262               | 0.192/ <mark>0.111</mark> | 0.228/0.140               | 0.197/ <mark>0.104</mark> |  |
| r <sub>eff</sub> – coarse | 1.300/1.048               | 2.225/1.322               | 0.944/ <mark>0.728</mark> | 1.086/ <mark>0.807</mark> |  |
| Re(m) - coarse            | 0.093/ <mark>0.076</mark> | 0.099/ <mark>0.079</mark> | 0.075/ <mark>0.061</mark> | 0.084/ <mark>0.066</mark> |  |
| Im(m) – coarse            | 0.139/ <mark>0.076</mark> | 0.136/0.073               | 0.100/0.053               | 0.103/0.054               |  |
| AOT - coarse              | 0.394/ <mark>0.240</mark> | 0.218/0.121               | 0.223/0.145               | 0.206/0.115               |  |



#### **Results – Fine mode AOT**

#### Retrieved vs true AOT – Converging + non-converging retrievals





#### **Results - Coarse mode AOT**

#### Retrieved vs true AOT – Converging + non-converging retrievals



#### **Results – Total AOT**

Retrieved vs true AOT – Converging + non-converging retrievals



## **Application to RIVM SPEX measurements**

- Ground-based RIVM-SPEX observations performed between 7 and 9 July 2013 at Cabauw (Netherlands)
- Intensity and degree of polarization in the principal plane at 441, 675 and 870 nm, used in the retrieval scheme
- Albedo at 870 nm fitted together with aerosol parameters





#### LUT vs NN first guess – SPEX retrievals

- 57 retrievals performed using LUT and NN first guess
- NN first guess yields more converging retrievals also with real measurements

| N. data            | LUT FG     | NN FG      |  |
|--------------------|------------|------------|--|
|                    |            |            |  |
| $\chi^{2} < 1$     | 26 (45.6%) | 36 (63.2%) |  |
| χ <sup>2</sup> < 2 | 36 (63.2%) | 42 (73.7%) |  |
| χ <sup>2</sup> < 5 | 45 (78.9%) | 49 (85.9%) |  |





#### **SPEX vs AERONET : AOT and effective radius**

#### LUT first guess

**NN first guess** 





#### **SPEX vs AERONET: refractive index**

#### LUT first guess

#### **NN first guess**





## Conclusions

#### Outline

- NNs seem a good replacement for LUTs in polarimetric aerosol retrieval schemes
- Evidence with simulated data seems confirmed by first (few) preliminary experiments with real observations
- More reliable conclusions to be drawn as soon as more SPEX measurements are available

#### Limitations and open challenges

- Reduced input flexibility (once trained for a set of wavelengths/angles, NN needs measurements at (or close to) those wavelengths/angles)
- Difficult extension to satellite geometry in case of multiangular observations (POLDER set of viewing angles is highly variable from pixel to pixel – difficult to define an uniform observation vector for training a NN)

